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What is the minimum size of a gridWhat is the minimum size of a grid 
required for a straight line drawing?
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A restricted class of plane graphs may 
h id d ihave more compact grid drawing.

Triangulated plane graphg p g p

3-connected graph3 connected graph



4-connected ?4 connected ?

di t dnot 4-connected disconnected



H h i i d f 4 t dHow much area is required for 4-connected
plane graphs?p g p



Straight line grid drawing

Miura et al.  ’01

Input: 4-connected plane graph G
O t t t i ht li idOutput: a straight line grid 

drawing 
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Main idea
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4-canonical ordering [KH97](4-connected graph)
(1) Edges (1 2) and (n n 1) are on the outer face(1) Edges (1,2) and (n,n-1) are on the outer face
(2) For each vertex k, 3 < k < n-2,

at least two neighbors have lower number and at least twog
neighbors have higher neighbor.
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4-canonical ordering [KH97](4-connected graph)
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15 16

14
10 1311

12
Generalization of 

8 5

1311
9 an st-numbering

47

8 56

1 2
3

{ , , , }1 2 L i and { , , , }i i n+ +1 2 LBoth vertices

induce 2-connected subgraphs.
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Graph is not triangulatedGraph is not triangulated

Is there any ordering?Is there any ordering?
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Convex Grid Drawingg

Chrobak and Kant  ’97

Input: 3-connected graph

n-2Output: convex grid drawing
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Chrobak and Kant  ’97 Miura et al.    2000

3-connected graph 4-connected graph
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The algorithm of Miura et al. is
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2

H 4

2nHW ≥×
4

W



Vertex orderingVertex ordering

st-numbering

Canonical ordering

4-canonical ordering

Canonical decomposition

4-canonical decomposition



20 21 2120

Main idea

14
1718 19

21 2120

19
17

18

6 8
9

10
11 1213

1415
16

9
16

8

1412

13 10 11

15

3
4 5

7 8 9

3
4 5

6
7

8

1:  4-canonical decomposition
1 2 1 2

4

O(n)[NRN97] 2: Find paths

18 19
20 21

( )[ ]

3: Decide x-coordinates

14
15

16 17 11 12
9 10

7 86 4 D id di t13 7 86
3 4 5

4: Decide y-coordinates

1 2 Time complexity: O(n)



4-canonical decomposition[NRN97]
(a generalization of st-numbering)
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(a generalization of st-numbering)

O(n)
U1220 n = 21 Gk -1

(a) Uk

U11
U10

U8
12

13 1415

17
18 19

Gk

U9
U7

U6U5

U36 8
9 10

11
13 15

16
Gk -1

UU4

U2

3
4 5

7

G

(b) face
Uk

U1
1 2

Gk

Gk 1Gk -1

(c)
face

Uk

G

Gk

( ) k



ConclusionsConclusions

st-numbering

Canonical ordering

4-canonical ordering

Canonical decomposition

4-canonical decomposition



ConclusionsConclusions

Recent Development

OC Orderly spanning treesChiang et al., 2001

Miura et al. 2004

Canonical decomposition, realizer and orderly
Spanning tree are equivalent notions.




