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| #S,1 has two neighbors j, k

] <i<Kk.



| #S,1 has two neighbors j, k

] <i<Kk.



For any i, both vertices {1, 2, -+, 1} and
{i+1,14+2,---,n} induce connected subgraphs.



Application of st-numbersing

Planarity testing

Visibility drawing

Internet routing
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Canonical Ordering J

Forany k, 3<k <n

(col) G, is biconnected and
internally triangulated

(co2) vertices 1 and 2 are on the outer face of G,

(co3) vertex k+1 is on the outer face of G, and the neighbor
of k+1 Is consecutive on the outer cycle C,(G,).
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Forany k, 3<k <n

(col) G, is biconnected and
internally triangulated
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(co2) vertices 1 and 2 are on the outer face of G, Gio

(co3) vertex k+1 is on the outer face of G, and the neighbor
of k+1 Is consecutive on the outer cycle C,(G,).




Straight Line Grid Drawing
Straight line grid drawing.
Plane graph

de Fraysseix et al. ’90

W x H <2n?



Initial drawing of G,







Shift method Shift and install k + 1




Schnyder 90
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What is the minimum size of a grid
required for a straight line drawing?



..................................




A restricted class of plane graphs may
have more compact grid drawing.

Triangulated plane graph

v
3-connected graph






How much area 1s required for 4-connected
plane graphs?



Straight line grid drawing

Miura et al. ’01

Input: 4-connected plane graph G

Output: a straight line grid
drawing
Grid Size :

W,H <
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Schnyder 90 Miura et al. ’01
plane graph G 4-connected plane graph G
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Triangulate all inner faces

Stepl: find a 4-canonical ordering
n=18
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-------
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Main idea

.
.

Step2: Divide G into two
halves G’ and G”’

[ >

Step3 and 4 : Draw G’ and
G” in isosceles right-angled ! ,
triangles G
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h/2]

Step5: Combine the
drawings of G” and G”
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4-canonical ordering [KH97](4-connected graph)
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(2) For each vertex k, 3 <k <n-2,
at least two neighbors have lower number and at least two
\ neighbors have higher neighbor. )




4-canonical ordering [KH97](4-connected graph)
N 1—1"7 n=18

Generalization of
an st-numbering

Both vertices {1,2,°°°,i} and U+L1+2,---,n}

induce 2-connected subgraphs.



Shift method Shift and install k + 1

Only one shift



Shift method Shift and install k + 1




Graph is not triangulated

Is there any ordering?
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Canonical Decomposition
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\; Canonical Decomposition

(cdl) V, 1s the set of all vertices on the
inner face containing edge (U,,u,).

\s (cd2) for each index k, 1 <k <h, G 1s
\ internally 3-connected.

v (cd3) for each k, 2 =k=h-1, vertices in

1 - V| are on the outer vertices and the
< following (a) and (b) holds.
1
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Internally 3-connected
G Is bi-connected
For any separation pair {u,v} of G

U and v are outer vertices

each connected component of
G-{u,v} contains an outer vertex.

Ua SeEparation pair
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Convex Grid Drawing

Chrobak and Kant 97

Input: 3-connected graph |

Output: convex grid drawing |-
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Shift method
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Shift method
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Chrobak and Kant °97 Miura etal. 2000
3-connected graph 4-connected graph

n-2

)

| Area<1/4




The algorithm of Miura et al. is
best possible




@ st-numbering

@ Canonical ordering

@ 4-canonical ordering

@ Canonical decomposition

@ 4-canonical decomposition




Main idea
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4: Decide y-coordinates

Time complexity: O(n)
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4-canonical decomposition[ NRN97] O(n)

(a generalization of st-numbeéring)
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Recent Development

Chiang et al., 2001 Orderly spanning trees

Miura et al. 2004

Canonical decomposition, realizer and orderly
Spanning tree are equivalent notions.






