Various Orders and Drawings of Plane Graphs

Takao Nishizeki
Tohoku University

Vertex ordering

Vertex ordering

st-numberingCanonical ordering4-canonical orderingCanonical decomposition
(C) 4-canonical decomposition

Vertex ordering

st-numberingCanonical ordering4-canonical orderingCanonical decomposition
(C) 4-canonical decomposition

st-numbering

$i \neq s, t$ has two neighbors $j, k \quad s=1$

$$
j<i<k
$$

st-numbering

$$
i=10
$$

$i \neq S, t$ has two neighbors $j, k \quad s=1$

$$
j<i<k
$$

$$
i=9
$$

$$
s=1
$$

For any i, both vertices $\{1,2, \cdots, i\}$ and
$\{i+1, i+2, \cdots, n\}$ induce connected subgraphs.

Application of st-numbersing

Planarity testing

Visibility drawing
Internet routing

Vertex ordering

st-numbering

- Canonical ordering

4-canonical ordering

- Canonical decomposition
- 4-canonical decomposition

Canonical Ordering

Triangulated plane graph

Canonical Ordering

G_{k} : subgraph of G induced by vertices $1,2, \cdots, k$

Canonical Ordering

G_{9}

G_{k} : subgraph of G induced by vertices $1,2, \cdots, k$

Canonical Ordering

For any $k, 3 \leq k \leq n$
(co1) G_{k} is biconnected and internally triangulated

(co2) vertices 1 and 2 are on the outer face of G_{k}
(co3) vertex $k+1$ is on the outer face of G_{k} and the neighbor of $\mathrm{k}+1$ is consecutive on the outer cycle $C_{o}\left(G_{k}\right)$.

(co3) vertex $k+1$ is on the outer face of G_{k} and the neighbor of $\mathrm{k}+1$ is consecutive on the outer cycle $C_{o}\left(G_{k}\right)$.

(co3) vertex $k+1$ is on the outer face of G_{k} and the neighbor of $\mathrm{k}+1$ is consecutive on the outer cycle $C_{o}\left(G_{k}\right)$.

(co3) vertex $k+1$ is on the outer face of G_{k} and the neighbor of $\mathrm{k}+1$ is consecutive on the outer cycle $C_{o}\left(G_{k}\right)$.

Canonical Ordering

For any $k, 3 \leq k \leq n$ (co1) G_{k} is biconnected and internally triangulated

(co3) vertex $k+1$ is on the outer face of G_{k} and the neighbor of $\mathrm{k}+1$ is consecutive on the outer cycle $C_{o}\left(G_{k}\right)$.

Canonical Ordering

For any $k, 3 \leq k \leq n$
(co1) G_{k} is biconnected and internally triangulated

(co2) vertices 1 and 2 are on the outer face of G_{k}
(co3) vertex $k+1$ is on the outer face of G_{k} and the neighbor of $\mathrm{k}+1$ is consecutive on the outer cycle $C_{o}\left(G_{k}\right)$.

Straight Line Grid Drawing

Plane graph
de Fraysseix et al. '90

Straight line grid drawing.
$W \times H \leq 2 n^{2}$

Initial drawing of G_{3}

Install $k+1$

Shift method

Shift and install $k+1$

Schnyder '90

$W \times H \leq n^{2}$
Upper bound

What is the minimum size of a grid required for a straight line drawing?

Lower Bound

A restricted class of plane graphs may have more compact grid drawing.

Triangulated plane graph

3-connected graph

4-connected?

not 4-connected

disconnected

How much area is required for 4-connected plane graphs?

Straight line grid drawing

Miura et al. '01
Input: 4-connected plane graph G
Output: a straight line grid drawing
Grid Size :

$$
W, H \leq \frac{n}{2}
$$

Area:

$$
W \times H \leq \frac{n^{2}}{4}
$$

Schnyder '90
plane graph G

Miura et al. '01
4-connected plane graph G

Area $\equiv n^{2}$
Area $\leqq n^{2} / 4$

Vertex ordering

© st-numbering

- Canonical ordering
- 4-canonical ordering
- Canonical decomposition
(1) 4-canonical decomposition

Triangulate all inner faces
Step1: find a 4-canonical ordering

Main idea

Step2: Divide G into two halves G^{\prime} and $G "$

Step3 and 4 : Draw G^{\prime} and G " in isosceles right-angled triangles

4-canonical ordering [KH97](4-connected graph)

(1) Edges $(1,2)$ and $(n, n-1)$ are on the outer face
(2) For each vertex $k, 3<k<n-2$,
at least two neighbors have lower number and at least two neighbors have higher neighbor.

4-canonical ordering [KH97](4-connected graph)

Generalization of an st-numbering

Both vertices $\{1,2, \cdots, i\}$ and $\{i+1, i+2, \cdots, n\}$ induce 2 -connected subgraphs.

Shift method

Shift and install $k+1$

Only one shift

Shift method

Shift and install $k+1$

Graph is not triangulated

Is there any ordering?

Vertex ordering

© st-numbering

- Canonical ordering
(-)-canonical ordering
- Canonical decomposition
(1) 4-canonical decomposition

Canonical Decomposition

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Internally 3-connected

G is bi-connected

For any separation pair $\{u, v\}$ of G
u and v are outer vertices
each connected component of $G-\{u, v\}$ contains an outer vertex.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Canonical Decomposition

 (cd1) V_{1} is the set of all vertices on the inner face containing edge $\left(u_{1}, u_{2}\right)$. (cd2) for each index $k, 1 \leq k \leq h, G_{k}$ is internally 3-connected.(cd3) for each $k, 2 \leqq k \leqq h-1$, vertices in V_{k} are on the outer vertices and the following (a) and (b) holds.

Convex Grid Drawing

Chrobak and Kant '97
Input: 3-connected graph
Output: convex grid drawing

Grid Size Area $\quad W \times H \leq n^{2}$

Shift method

Shift method

Shift method

Shift method

Shift method

Chrobak and Kant '97
3-connected graph

The algorithm of Miura et al. is best possible

$$
W \times H \geq \frac{n^{2}}{4}
$$

Vertex ordering

© st-numbering

- Canonical ordering
(-4-canonical ordering
- Canonical decomposition
© 4-canonical decomposition

Main idea

1: 4-canonical decomposition O(n)[NRN97]

2: Find paths

4: Decide y-coordinates
Time complexity: $O(n)$

4-canonical decomposition[NRN97]
 (a generalization of $s t$-numbering)

4-canonical decomposition[NRN97]
 (a generalization of st-numbering)

Conclusions

© st-numbering

- Canonical ordering
(-4-canonical ordering
- Canonical decomposition
(-4-canonical decomposition

Conclusions

Recent Development

Chiang et al., 2001
 Orderly spanning trees

Miura et al. 2004
Canonical decomposition, realizer and orderly Spanning tree are equivalent notions.

